Maintenance of T Cell Specification and Differentiation Requires Recurrent Notch Receptor–Ligand Interactions

نویسندگان

  • Thomas M. Schmitt
  • Maria Ciofani
  • Howard T. Petrie
  • Juan Carlos Zúñiga-Pflücker
چکیده

Notch signaling has been shown to play a pivotal role in inducing T lineage commitment. However, T cell progenitors are known to retain other lineage potential long after the first point at which Notch signaling is required. Thus, additional requirements for Notch signals and the timing of these events relative to intrathymic differentiation remain unknown. Here, we address this issue by culturing subsets of CD4 CD8 double negative (DN) thymocytes on control stromal cells or stromal cells expressing Delta-like 1 (Dll1). All DN subsets were found to require Notch signals to differentiate into CD4+ CD8+ T cells. Using clonal analyses, we show that CD44+ CD25+ (DN2) cells, which appeared committed to the T cell lineage when cultured on Dll1-expressing stromal cells, nonetheless gave rise to natural killer cells with a progenitor frequency similar to that of CD44+ CD25- (DN1) thymocytes when Notch signaling was absent. These data, together with the observation that Dll1 is expressed on stromal cells throughout the thymic cortex, indicates that Notch receptor-ligand interactions are necessary for induction and maintenance of T cell lineage specification at both the DN1 and DN2 stages of T cell development, suggesting that the Notch-induced repression of the B cell fate is temporally separate from Notch-induced commitment to the T lineage.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Obligatory role for cooperative signaling by pre-TCR and Notch during thymocyte differentiation.

The first checkpoint during T cell development, known as beta selection, requires the successful rearrangement of the TCR-beta gene locus. Notch signaling has been implicated in various stages during T lymphopoiesis. However, it is unclear whether Notch receptor-ligand interactions are necessary during beta selection. Here, we show that pre-TCR signaling concurrent with Notch receptor and Delta...

متن کامل

Specific Notch receptor–ligand interactions control human TCR-αβ/γδ development by inducing differential Notch signal strength

In humans, high Notch activation promotes γδ T cell development, whereas lower levels promote αβ-lineage differentiation. How these different Notch signals are generated has remained unclear. We show that differential Notch receptor-ligand interactions mediate this process. Whereas Delta-like 4 supports both TCR-αβ and -γδ development, Jagged1 induces mainly αβ-lineage differentiation. In contr...

متن کامل

Cellular and molecular requirements for the selection of in vitro-generated CD8 T cells reveal a role for Notch.

Differentiation of CD8 single-positive (SP) T cells is predicated by the ability of lymphocyte progenitors to integrate multiple signaling cues provided by the thymic microenvironment. In the thymus and the OP9-DL1 system for T cell development, Notch signals are required for progenitors to commit to the T cell lineage and necessary for their progression to the CD4(+)CD8(+) double-positive (DP)...

متن کامل

Notch signaling distinguishes 2 waves of definitive hematopoiesis in the zebrafish embryo.

Recent studies have revealed that definitive hematopoiesis in vertebrates initiates through the formation of a non-self-renewing progenitor with limited multilineage differentiation potential termed the erythromyeloid progenitor (EMP). EMPs are specified before hematopoietic stem cells (HSCs), which self-renew and are capable of forming all mature adult blood lineages including lymphoid cells. ...

متن کامل

HEMATOPOIESIS AND STEM CELLS Notch signaling distinguishes 2 waves of definitive hematopoiesis in the zebrafish embryo

Recent studies have revealed that definitive hematopoiesis in vertebrates initiates through the formation of a non–selfrenewing progenitor with limited multilineage differentiation potential termed the erythromyeloid progenitor (EMP). EMPs are specified before hematopoietic stem cells (HSCs), which self-renew and are capable of forming all mature adult blood lineages including lymphoid cells. D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Experimental Medicine

دوره 200  شماره 

صفحات  -

تاریخ انتشار 2004